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This paper presents tests of a new method for the simultaneous estimation
of spacecraft attitude and sensor biases, based on a quatemion estimation
algorithm minimizing Wahba's loss function. The new method is compared
with a conventional batch least-squares differential correction algorithm.
The estimates are based on data from strapdown gyros and star trackers,
simulated with varying levels of Gaussian noise for both inertially-fixed and

Earth-pointing reference attitudes. Both algorithms solve for the spacecraft
attitude and the gyro drift rate biases. They converge to the same estimates
at the same rate for inerfially-fixed attitude, but the new algorithm converges
more slowly than the differential correction for Earth-pointing attitude. The
slower convergence of the new method for non-zero attitude rates is
believed to be due to the use of an inadequate approximation for a partial
derivative matrix. The new method requires about twice the computational
effort of the differential correction. Improving the approximation for the
partial derivative matrix in the new method is expected to improve its
convergence at the cost of increased computational effort.
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Introduction

When determining the three-axis attitude of a spacecraft, it is often necessary to simultaneously

estimate sensor biases and misalignments. An extended Kalman filter or a batch least-squares

differential correction procedure is generally used for this process [1]. These methods, collectively

referred to as state estimation methods, require that the nonlinear estimation problem be linearized

about a priori estimates of the attitude, biases, and misalignments. The purpose of this paper is to

compare the standard batch least-squares differential correction procedure with a new algorithm

[21 based on the q-method for minimizing Wahba's least-squares loss function [3]. The new

algorithm computes the parameters iteratively, but does not linearize about an a priori attitude

estimate, so it is expected to be more robust than the usual state estimation methods if the problem

is highly nonlinear or if initial estimates are p_×)r.

The development of the new algorithm is presented in detail in reference 2, along with some

historical background, so it will not be repeated here. The following iterative procedure estimates

the attitude at time t and the vector x comprising the m non-attitude parameters. An a priori estimate

x0 of x is used to compute the matrix

.el

B(t, x) = Z a i 4_(t, ti; x)bi(x)riT(x), (1)
i=1

where the unit vectors r i are representations in an inertial reference frame of the directions to some

observed objects, the b i are the unit vector representations of the corresponding observations in the

spacecraft body frame, the a i are positive weights, and n is the number of observations. The 3x3

attitude propagation matrix O(t, to; x) is the solution of the differential equation

with initial value
dq)(t, to; x)/dt = [re(t, x)×] _(t, to; x) (2)

q)(t 0, to; x) = I = the 3x3 identity matrix, (3)

where the cohmm vector re(t, x) contains the components in the body frame of the spacecraft

angular vel_ity relative to inertial space. The matrix [v×l is defined for an arbitrary three-vector v

f 0 v 3 v2 ]
[vx] -= v3 1) -- Vl (4)

-- v2 v 1 0

by

The parameters in x may enter the matrix B(t, x) throt, gh the kinematics expressed by _(t, ti; x),

the observation modeling in bi(x), or the reference vector models in ri(x ). The m matrices _B/Oxj,

and the m(m+l)/2 independent matrices 02B/OxjOx k expressing the derivatives of B(t, x) with

respect to the parameters must also be computed.

Standard methods [4] are next used to compute the largest eigenvalue A,max(X ) and

corresponding normalized eigenvector qopt(t, x) of the symmetric 4×4 matrix

I B(t, x) + BT(t, x) - 1 trB(/, x) p(t, x) q
K(t, x) = pT(t, x) trB(t, x) J (5)
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with thethree-componentcolumnvectorp(t, x) defined by

[p(t, x)×] = BT(t, x) - B(t, x). (6)

Then the optimal attitude matrix for parameter vector x, Aopt(t, x), is computed from qopt(t, x) by

Aopt(t, x) = (q2 _ QTQ) I + 2QQ T- 2q[Q×], (7)

where the three-vector part Q and scalar part q of the quatemion qopt(t, x) are given by

qoptT(t, x) = [QT, q]. (8)

The parameter vector update is given by

_Xop t = w-l(x)[h(x) - WO(x - xO)], (9)

where, for j, k = 1..... m,

Wjk(X) = [W 0 - NT(t,

and

hj(x)

Nlj(t, x) =

N2j(t, x) =

N3j(t, x) = ([3B(t,

x)M-l(t, x)N(t, x)]jk - tr[AoptT(t, x)_2B(t, x)/bxj_gXk], (10)

= tr{ [_B(t, x)/_xj]AoptT(t, x)}, (11)

x)/_xj]AoptT(t, x) }23 - {[bB(t, x)/_xj]AoptT(t, x) }32 , (12a)

x)/_xj]AoptT(t,x)}31 - {[_B(t,x)[bxj]AoptT(t,x)}13 , (12b)

x)/_xj]AoptT(t, x)} 12 - {[bB(t, x)/3xj]AoptT(t, x)}21, (12c)

(13)M(t, x) = _rnax(X) I - B(t, x)AoptT(t, x).

In these equations x 0 is the a priori estimate of x and W 0 is a symmetric positive-semidef'mite

matrix of weights assigned to this estimate; it is permissible to assign zero weights to the apriori

estimate by setting W 0 = 0. The update o_lXoptis added to x to get the new parameter estimate, ff the

update is small enough, the procedure is complete; otherwise the computations are repeated from

equation (1) until convergence is achieved.

The attitude covariance P00, the parameter covariance Pxx, and the cross-covariance POx of

the converged estimate can be computed as follows:

Poo(t) = Crtot2[M-l(t, x) + M-l(t, x)N(t, x)W-l(x)NT(t, x)M-l(t, x)], (14)

Pxx = _Ytot2 w-l(x), (15)
and

P0x(t) = PxoT(t) = Crtot2M-l(t, x)N(t, x)W-l(x), (16)
where n

crt°t2 --- [ _1 °'i-2]-1 (17)

with cri2 equal to the variance of the i th vector measurement. The covariance computation assumes

the weights to be

ai = Crto2/Cri 2 (18)
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where

u is the unit vector

and

W 0 = Crtot2(pO)-l, (19)

where p0 is the covariance of the a priori parameter vector estimate. An expression for M -1 (t, x) is

derived in the Appendix, eliminating the need for a numerical matrix inversion.

Application to Gyro Drift Determination

For the application to be treated in this paper, we assume that the kinematic information for

attitude propagation is obtained from three gyros aligned with the spacecraft body axes. In this case

the estimation algorithm assumes that the body rate vector c0(t, x) is

co(t, x) = cog(t)- x, (20)

where cog(t) is the column vector of gyro outputs and x, a three-component vector of gyro drifts,

is the vector of parameters to be estimated. These parameters enter B(t, x) through the attitude

propagation matrices dO(t, ti; x). The first and second partial derivatives of dO(t, ti; x) with respect

to the components of x are needed to evaluate the corresponding partial derivatives ofB(t, x). The

partial derivative of equation (2) with respect to xj is, using equation (20),

d[adO(t, to; x)/Oxj ]/dt = - [co(t, x)xl[adO(t, to; x)/axj ] + [ej x] dO(t, to; x), (21)

where ej is the unit vector along thej th spacecraft axis. The solution of this differential equation

consistent with equations (2) and (3) is
t

adO(t, to; x)/axj= {OdO(t, t'; x)[ej x] dO(t', to; x) dt'. (22)

Using the group property and orthogonality of the attitude propagation matrix,

dO(t', to; x) = dO(t', t; x)dO(t,to; x) = dOT(t,t'; x)dO(t,to; x), (23)

and the relation

¢[ej ×l doT = [(doei )×1, (24)

which holds for any proper orthogonal matrix dO, gives

adO(t, to; x)/axj = - [_tj(t, to; x)×]dO(t, to; x), (25)

where _j(t, to; x) is the jth column of the matrix
t

°d(t, to; x) =- S dO(t, t'; x) dt'= [_l(t, to; x) _t2(t, to; x) _t3(t, to; x)]. (26)
t0

The matrices dO(t, to; x) and q-'(t, to; x) are also used for the usual state estimation methods

[5, 6]. They are computed by adding up contributions over time intervals ti+ 1 - t i, which are

chosen to be short enough that variations in co over the interval can be neglected. Thus

dO(ti+ 1, to; x) = dO(ti+l, ti ; x)dO(ti, to; x),

dO(ti+ 1, t i ; x) = I - [u×]sinl_l + [ux]2(1 - cosl_l),

u = ¢o/Iml,

(27)

(28)

(29)
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and I¢1is the length of the vector

¢ ---0_(ti+ 1 - t i ). (30)

Similarly,

W(ti+ 1, to; x) = W(ti+ 1, ti ; x) + _(ti+ 1, ti ; x)W(ti, to; x), (31)
with

W(ti+ 1, t i ; x) = - (ti+ 1 - t i ){I - [u×]l¢l-l(1 - cosl¢l) + [u×]2(1 - I¢l-lsinl¢l)}. (32)

The second partial derivatives of O(t, to; x) only appear in W(x) and not in h(x), so

approximate forms will be used for these partials. They are also computed by adding up

contributions over short time intervals ti + 1 - ti , giving

a2_(/i+l, to; x)/Oxj Oxk = [02O(ti+ 1, ti ; x)/Oxj Oxk ]O(t i, to; x)

+ [/)O(ti+ 1, ti; x)/Oxj][O_(t i, to; x)/OXk] + [O_(ti+ 1, t i ; x)/OXk][_(t i, to; x)/Oxj]

+ O(ti+ 1, t i ; x)[02O(/i, to; x)/Oxj Oxk ], (33)

where the first partial derivatives are give by equations (25) - (32) and where

O2_(ti+ 1, ti ; x)/Oxj Oxk = (/i+1-ti )2{½ (ej ekr + e k ej T- 2_jkl)

+ 3! (_0j[e k x] + q_k[ej x] + _Sjk[_X] ) }. (34)

The approximation is in equation (34), which is valid to first order in t_. Starting the iterative

computations of equations (27), (31), and (33) requires initial values for the matrices: the identity

for O(t 0 , to; x) from equation (3), and zero for W(t 0, to; x) and O2_(t 0, to; x)/Oxj Oxk .

Observation Modeling

Star tracker data are used to estimate the spacecraft attitude and gyro drifts. Each star tracker

measurement is a two-component vector Yi giving the location of the star image in the focal plane

of the sensor. For attitude estimation with the new method we need to compute the star unit vector

in the spacecraft body frame b i in terms of the measurement data Yi" The star unit vector in the

sensor frame is

s i = (1 + lYi 12)-1/2[(yi) 1, (Yi)2' 1IT' (35)

and then b i is given by

b i = CiTs i , (36)

where C i is the proper orthogonal 3x3 matrix defining the orientation in the body frame of the star

tracker making this observation.

Data Simulation

Simulated gyro data and star tracker data are used to test the algorithm. The simulation assumes

a constant angular velocity vector COtrue.The gyro data are simulated by adding varying levels of

Gaussian noise to the components of _true. A true attitude matrix is computed by integrating the

angular rates;

dAtrue(t)/dt = - [_true X] Atrue(t), (37)

with some specified initial attitude matrix Atrue(tO).
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A staris initially simulatedfor eachstar tracker by randomly generating a measurement vector

Yi within the star tracker field of view. Equations (35) and (36) then give the star unit vector b i in

the body frame, and the star unit vector in the inertial reference frame is given by

r i = A trueT(ti)bi , (38)

where t i is the simulation time. For successive simulation times ti , the reference vector r i is held

fixed and the vector in the body frame is computed as

b i = Atrue(ti)ri .

Then the corresponding vector in the star tracker reference flame is given by the inverse of

equation (36),

s i = Cib i ;

the measurement vector Yi by the inverse of equation (35),

Yi = (si)3-1 [(Si)l, (si)2]r,

(39)

(40)

(41)

and Gaussian noise is added to the two components of Yi" This process is continued until the star

has been tracked for some fixed number of observations or until it leaves the field of view, at

which time a new star is randomly placed in the field of view. Earth and Sun interference are

neglected in these simulations.

Comparison Algorithm

The algorithm chosen for comparison is a batch least-squares differential correction algorithm

similar to that employed in the attitude ground support system of the Upper Atmosphere Research

Satellite (UARS) [6]. The algorithm provides a least-squares estimate of a six-component state

vector

8X T - [_i0 T 8xT], (42)

where _0 is the attitude error vector at epoch, and 8x is the error in the gyro drift estimates. This is

updated iteratively as follows. At the start of each iteration, an estimate x of the gyro drifts and

Aest(t O) of the epoch attitude are available. For each measurement Yi, a predicted value gi is

computed from the known reference vector r i by equations identical to (39) - (41), but with the

unknown attitude matrix Atrue(ti) replaced by

Aest(t i) = _(t i, to; X)Aest(to). (43)

The computed value gi is seen to depend on both x and Aest(to). The optimal state update is the

solution of

F _X = Z ¢7i-2GiT(yi - gi) - (44)
i=1 (p0)-l(x - X0 '

where

n_ [:F -- Z tr;-2GiTG i +
i=1 (p0_-l]' (45)
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with 0"/-2,pO, and xO as defined previously, and with 0 a three-vector of zeros and 0 a 3x3 matrix

of zeros. The 2x6 matrix G i of partial derivatives of the errors of the ith measurement with respect

to 8X is given by

= I (Yi)10'i)2 - 1 - (Yi)l 2 (Yi)2 ] Ci [_(t/, to ; x) _t(t i, t_, x)]. (46)Gi

L1 + (Yi)22 (Yi)I(Yi)2 - (Yi)I J
This state update gives new estimates of the gyro drifts and attitude:

Xne w = x + 8x, (47)
and

Anew(tO) = {I -lS0l-l[80×]sinl80l + 1801-2180×]2(1 - coslSOl) }A est( to). (48)

This iterative procedure is repeated until convergence is achieved. An estimate of the covariance

matrix is provided by [r P0 "_x]
Poe =F (49)

Px0 PxxJ

The initial attitude to begin the first iteration is provided by the q-method, as embodied in equations

(1)- (7).

Numerical Examples

Tests were performed for both inertially-fixed and earth-pointing spacecraft attitudes, with star

tracker orientations and other parameters corresponding to the Gamma Ray Observatory (GRO) [7]

and UARS [6] spacecraft, respectively. Two star trackers were modeled with 8 degree by 8 degree

fields of view and with an angle of approximately 73 degrees between their boresights. Some tests

were performed with perfect star tracker measurements, but the results presented in this paper all

include Gaussian noise on each star tracker output with standard deviation of 8 arc seconds, or

3.88 x 10--5 radians. The time interval between star tracker measurements was 32.768 seconds, the

interval used by the UARS onboard computer. The data were simulated with no gyro bias, and the

estimations were performed with non-zero initial bias estimates, so the bias estimate is the same as

the bias error for these tests. The initial bias error was 10 -4 radians/sec along either the spacecraft

roll or yaw axis, but only representative results with initial roll bias errors are given below.

The epoch time to for the estimation was taken to be the time of the first observation. In all but

four tests, the true attitude matrix at epoch was set equal to the identity matrix. The tests for one

simulation case were repeated with four different true attitude matrices at epoch:

F 0.352 0.864 0.360]

Atrue(to)= /-0.864 0.152 0.480|,

L 0.360 -0.480 o.800j

Atrue(to) = diag[1, -1,-1],

Atrue(to)- diag[-1, I,-I],

(50a)

(50b)

(50c)
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and

Atrue(t O) = diag[-1,-1, 1], (50d)

where diag[...] denotes a 3x3 matrix with the given elements on the main diagonal and zeros

elsewhere. The attitude and bias errors for these different initial attitudes were identical to those for

Atrue(tO) = I within the precision of the output, as they should be. The covariance p0 of the apriori

bias estimates was taken to be infinite for all tests.

A representative subset of the tests is presented in Tables 1-7. At least 10 iterations were

performed in each case, and the errors for all the iterations after those presented are identical to the

errors of the last iteration in the table, to the precision of the table. The first "iteration" in the

differential correction (DC) columns is not really a DC iteration; it is an initial attitude estimation

using the q-method, as explained above. Thus the bias error after one DC "iteration" is the apriori

error. The last line in each table is the estimate of the error standard deviations from the covariance

matrices of equations (14) and (15) or equation (49).

Tables 1-6 present the tests with inertially-fixed attitude. These are in pairs: Tables 1 and 2 give

the results for the highest observability case with two star trackers and a full orbit of data, Tables 3

and 4 have two star trackers but only 10 observations in each, and Tables 5 and 6 are for the case

of only 10 observations in a single star tracker. Each simulated star was observed five times in

these tests, so the cases in Tables 5 and 6 contain only two stars; the angular separation between

these stars was 1.3 degrees. In each pair of tables, the first (odd-numbered) presents the results

with no gyro noise, and the second (even-numbered) shows the effects of Gaussian noise on each

gyro with standard deviation of 1 degree/hour, or 4.848 x 10 -6 rad/sec.

The most important aspect of the tests, as concerns this paper, is the comparison of the results

of the new method to those of the DC. The bias and attitude errors are not the same at each

iteration, but both the general rate of convergence and the final converged errors are almost

identical. Where there are differences, the errors of the new method are slightly lower, but not by a

significant amount.

In the cases without gyro noise, the covariance matrix is a good indicator of the estimation

errors. This correspondence is especially striking in Tables 1 and 3, while the actual errors in Table

5 are about 20 times less than the covariance matrix would indicate. The errors in the latter case are

remarkably small considering the poor measurement geometry, with only two reference vectors

separated by 1.3 degrees. When gyro noise is included, the actual errors can exceed the covariance

estimates; this is not surprising since the covariance computation does not take gyro errors into

account, nor does any other part of the estimation process. When unrealistically large gyro noise

with standard deviation of 100 degree/hour was included, both estimation procedures became

unreliable. The new method failed catastrophically when the nominally positive-definite matrix W

defined by equation (10) developed a negative element on its main diagonal. The DC did not

become singular, since the matrix F of equation (45), unlike W, is manifestly positive-semidefinite;

but the bias estimation error increased monotonically for the first 10 iterations. Thus the new meth-

od is somewhat less robust than the DC in this case; but this is not very significant since a Kalman

filter or smoother should probably be used in the presence of large amounts of dynamic noise [5].
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Table1.BiasandAttitudeErrorsfor InertiaUy-fixedAttitude
with Two StarTrackers,95.6Minutesof Data,andnoGyro Noise

BatchDC New Method
Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D-4 2.88D-1 1.68D-6 2.88D-1
2 5.65D-7 1.50D-3 1.69D-9 4.83D-3
3 1.68D-9 5.83D-6 1.68D-9 5.82D-6
4 1.68D-9 5.81D--6 1.68D-9 5.80D-6

Covariance 2.90D-9 9.53D-6 2.91D-9 9.54D-6

Table2. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,95.6Minutesof Data,andGyro Noiseof 1deg/hour

BatchDC NewMethod
Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D-4 2.87D-1 1.73D--6 2.87D-1
2 6.54D-7 2.66D-3 2.90D-7 5.46D-3
3 2.90D-7 1.98D-3 2.90D-7 1.98D-3

Covariance 2.90D-9 9.53D-6 2.91D-9 9.54D-6

Table3. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with Two StarTrackers,5.5Minutesof Data,andnoGyro Noise

BatchDC New Method

Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)
1 1.00D-4 1.48D-2 2.12D-7 1.48D-2
2 2.17D-7 2.95D-5 2.07D-7 3.02D-5
3 2.07D-7 2.93D-5 2.07D-7 2.93D-5

Covariance 2.10D-7 3.67D-5 2.10D-7 3.68D-5

Table4. BiasandAttitudeErrorsfor InertiaUy-fixedAttitude
with Two StarTrackers,5.5Minutesof Data,andGyroNoiseof 1deg/hour

BatchDC NewMethod
Iteration Bias(rad/sec) Attitude(rad) Bias (rad/sec) Attitude(rad)

1 1.00D--4 1.49D-2 3.50D-6 1.49D-2
2 3.50D-6 2.71D-4 3.50D-6 2.71D--4
3 3.50D-6 2.72D--4 3.50D--6 2.72D--4

Covariance 2.10D-7 3.67D-5 2.10D-7 3.68D-5
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Table5. BiasandAttitudeErrorsfor Inertially-fixedAttitude
with OneStarTracker,5.5Minutesof Data,andnoGyroNoise

BatchDC NewMethod

Iteration Bias (rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)
1 1.00D--4 1.63D-2 1.14D-4 1.63D-2
2 2.29D-5 3.25D-3 1.07D-6 5.69D-3
3 1.38D-6 2.94D-4 1.08D--6 2.49D--4
4 1.10D-6 2.55D-4 1.08D-6 2.51D--4
5 1.11D-6 2.55D-4 1.08D-6 2.51D-4

Covariance 2.39D-5 4.18D-3 2.40D-5 4.19D-3

Table6.BiasandAttitudeErrorsfor Inertially-fixedAttitude
with OneStarTracker,5.5Minutesof Data,andGyro Noiseof 1deg/hour

BatchDC New Method
Iteration Bias (rad/sec) Attitude(rad) Bias (rad/sec) Attitude(rad)

1 1.00D-4 1.44D-2 1.18D-4 1.44D-2
2 2.25D-5 1.16D-2 4.39D-6 7.11D-4
3 4.51D-6 1.54D-2 4.41D-6 1.54D-2
4 4.50D-6 1.54D-2 4.41D--6 1.54D-2

Covariance 2.37D-5 4.16D-3 2.38D-5 4.18D-3

Table7.BiasandAttitudeErrorsfor Earth-PointingAttitude
with OneStarTracker,5.5Minutesof Data,andnoGym Noise

BatchDC New Method
Iteration Bias(rad/sec) Attitude(rad) Bias(rad/sec) Attitude(rad)

1 1.00D-4 3.01D-2 8.04D-5 3.01D-2
2 1.37D-5 2.54D-3 1.73D-5 3.02D-2
3 4.74D--6 8.52D--4 7.17D-6 3.05D-3
4 4.88D-6 8.76D-4 5.31D-6 1.27D-3
5 4.88D--6 8.76D-4 4.97D-6 9.48D-4
6 4.88D-6 8.76D--4 4.91D--6 8.90D-4
7 4.88D--6 8.76D-4 4.89D-6 8.79D-4
8 4.88D-6 8.76D-4 4.89D-6 8.78D-4
9 4.88D-6 8.76D-4 4.89D--6 8.77D-4

Covariance 1.24D-5 2.15D-3 1.12D-5 1.96D-3

60



Theattitudeerrorsin Table2 arelargerthanthosein Table4, showingthatestimatorsthatdonot
handledynamicnoisecorrecctlyshouldnotbeusedwith longspansof dataincluding theeffectsof
dynamicnoise.

Thetestswith Earth-pointingattitudeusedaconstantpitch rateof-1.083073 x 10.3 rad/sec,
which correspondsto anorbit periodof 96.7minutes.For thesetests,asimulatedstarwastracked
until it left thestartrackerfield of view.Thetestparameterswereotherwisethesameasfor
inertially-fixedattitude.Thenewmethoddid not fareaswell in thesetests;it generallyrequired
moreiterationsthantheDC to converge,althoughthefinal errorswerevirtually identical.This
suggeststhepresenceof errorsin thematrixW(x) that steers the estimates to their optimal values,

and not in the vector h(x) that identifies the optimum once it has been reached. Table 7 presents the

results of a test with a single star tracker, observing only two stars with angular separation of 7

degrees. This is a particularly discouraging example, in which the DC converged in four iterations,

while the new method required nine. Since this is a low observability case, in which attitude

kinematics information is more important compared to the measurements than in a high

observability case, an accurate computation of W(x) is especially important.

The greater success of the new method for inertially-fixed attitude than for non-inertial attitude

suggests the inadequacy of the approximation of equation (34) for the matrix of second partial

derivatives _2_(ti+ 1, ti; x)/_xj Oxk, which appears in W(x) and not in h(x). This approximation

should be replaced by one that is valid for all values of the rotation angle _, subject to the

assumption that the angular rates are approximately constant between observations. This may also

avoid the failure of the new method in the test with 100 degree/hour gyro noise, since this has an

effect on the propagation of the partial derivative matrices similar to the effects of actual angular

rates of the same size.

The computational effort required by the two algorithms was also measured. Both algorithms

were implemented in double-precision Fortran and executed on a DEC VAX 11/780. The CPU

times were proportional to the number of iterations performed, the times per iteration for the two

methods being

and
tcPU, ne w = 13 + 15.2 n msec (51a)

tcPU, DC = 31 + 6.7 n msec. (51b)

where n is the number of observations. The coefficient of n in these times can be interpreted as the

time required to process a measurement, including propagation of the attitude transition matrix,

partial dervative matrices, and so forth. The n-independent term represents the end-of-iteration

computations, including matrix inversions and computation of updates to the bias vector and

attitude matrix. Thus equation (51) shows that the measurement processing is more expensive for

the new method, while the end-of-iteration computations of the DC require more effort. The exact

CPU times will vary from case to case, but the DC appears to be about twice as fast, overall, as the

new method for the numbers of measurements typically processed. Improving the computation of

the matrix of second partial derivatives for the new method will require even more effort to process

each measurement.
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Conclusions

These tests establish the validity of a new method for the simultaneous estimation of spacecraft

attitude and sensor biases, based on a quaternion estimation algorithm minimizing Wahba's loss

function. The new algorithm performs as well as a batch least-squares differential correction in

tests with inertially-fixed attitude, in the sense of converging to equally accurate estimates in the

same number of iterations. The new algorithm converges more slowly than the differential

correction for Earth-pointing attitude, probably owing to the use of an inadequate approximation

for a partial derivative matrix in the new method. The new method does not show any advantages

in terms of robustness or speed of convergence, and in addition requires about twice the

computational effort of the differential correction. It is hoped that improving the approximation for

the partial derivative matrix in the new method will improve its convergence and/or robusmess,

without adding significantly to its computational burden.

Appendix

The matrix B(t, x) has the singular value decomposition [8]

B=V+S'V+T,

where U+ and V+ are proper orthogonal matrices, and

S' = diag[S 1, S 2, $3],

(A1)

(A2)

a 3x3 matrix with S 1, S 2, and S 3 on the main diagonal and zeros elsewhere. The arguments t and

x are omitted from this and all subsequent equations for notational simplicity. The optimal attitude

estimate is given in terms of these matrices by [8]

Aopt = U+ V+ T. (A3)

The maximum eigenvalue _ of the matrix K defined by equation (5) is related to the optimal

attitude by [2]

Zmax = tr(A optB T), (An)

where tr denotes the trace. Equations (A1) - (A4) and (13) show that

det B = SIS2S3, (A5)

= S1 + S 2 + S 3, (A6)

M = U+ diag[S 2 + $3, S 3 + S1, S 1 + S2]u+T. (A7)
and

We now define the scalar

A little algebra shows that

det M = (S2 + $3)(S 3 + S1)(S 1 + S2).

tO-- 1 [gmax 2 _ tr(BBT)]"

t¢ = $2S 3 + $3S 1 +S1S2,

(A8)

(A9)

(A10)
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r2max - det B = det M, (All)
and

t¢I+ BB T = U+ diag[(S 3 + S1)(S 1 + $2), (S 1 + $2)(S 2 + $3), (S 2 + $3)(S 3 + S1)]u+T = adj M,

(A12)
where adj denotes the adjoint matrix. Equations (A11) and (A12) give the desired result

M -1 = (_" _max - det B )-l(t¢I + BBT). (A13)

The evaluation ofM -1 by means of equations (A9) and (A13) does not require the singular value

decomposition of B.
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